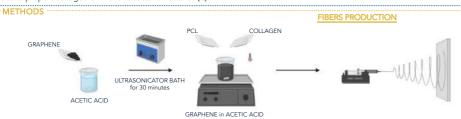


CONDUCTIVE ELECTROSPUN SCAFFOLD FOR WOUND HEALING

Marta Pollini, Marco Ruggeri, Barbara Vigani, Silvia Rossi, Giuseppina Sandri

Department of Drug Sciences, University of Pavia

marta.pollini01@universitadipavia.it



INTRODUCTION

Chronic wounds fail the normal healing process that restores tissue integrity after an injury and leads to a long-lasting inflammation [1]. In this field, three-dimensional (3D) biocompatible scaffolds represent the most outstanding innovations: they act as a physical support where cells can adhere, migrate, and proliferate [2]. To enhance the biological response, four-dimensional (4D) scaffolds, which are 3D platforms that react to external stimuli, have been proposed and in particular, electrical stimuli have attracted attention. Graphene is a conductive material that promotes the passage of the electrical current, and, upon electrical stimulation, it is reported as able to possess bioactive properties together with antibacterial features [3].

AIM

Given these premises, the aim of the present study is the design and the manufacturing of 4D scaffolds based on polycaprolactone (PCL) and collagen (COL) nanofibers, loaded with graphene (Gr), to promote skin wound healing.

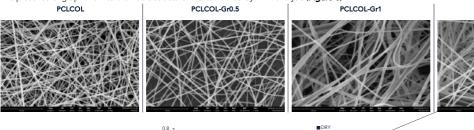

COL:PCL Graphene (%w/w) PCLCOL-Gr0.5 0.5 PCLCOL-Gr PCLCOL-Gr2

Table 1. Quali-quantitative composition of PCLCOL-Gr

- Morphological and dimensional analysis by means of scanning electron microscopy (SEM)
- Atomic Force Microscopy (AFM) to investigate scaffolds morphology and profilometry
 Fourier transform infrared spectroscopy (FTIR) to assess chemical surface characteristics
- Mechanical properties by means of a Texture Analyzer on dry and hydrated samples
- Scaffolds wettability through contact angle evaluation
- In-vitro cytotoxicity using MTT assay on normal human dermal fibroblasts (NHDF) after 24 hours of contact with fibers extracts

MORPHOLOGY and DIMENSIONAL ANALYSIS

Fibers were characterized by smooth surface and regular dimensions of about 400 nm. The addition of the Gr to the composition did not cause a modification of the fibers dimensions (Figure 2). The presence of graphene into the fibers structure was confirmed by TEM analysis (Figure 3)

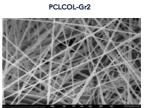
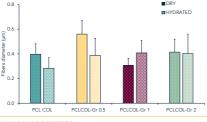



Figure 1. SEM micrographs of fibers at 10 kx ma g nifications (scale bar: 15 μm); dry and hydrated in deionized H₂O overnight samples

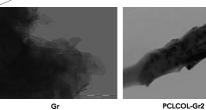
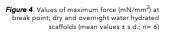
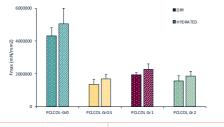




Figure 3. TFM micrographs of fibers

MECHANICAL PROPERTIES

Figure 4 shows the values of force at break point (Fmax) of PCLCOL-Gr nanofibers. The addition of Gr to the formulation induced a decrease in the values of force at break. On the contrary, the hydration process did not affect the scaffolds resistance.

 $\textbf{\textit{Figure 5}} \ \text{shows the FTIR spectra of PCLCOL} \ \text{and the scaffolds prepared with different}$ Gr concentrations.

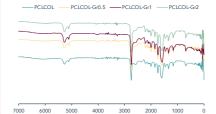


Figure 5. FTIR spectra of PCLCOL and PCLCOL-Gr

WETTABILITY Figure 6 shows the contact angle values. A decrease in contact angles was observed overtime, especially for PCLCOL and PCLCOL-Gr0.5 120 100

Figure 6. Comparison of 80 wettability tests carried out in water and acquired over time on fibers (mean values ± s.d.; n=3)

IN-VITRO CYTOTOXICITY

The MTT assay performed on NHDF confirmed scaffolds biocompatibility even at higher concentrations. Moreover, nanofibers loaded with Gr were characterized by a higher biocompatibility than that of Gr as suspension which means the fibers were able to protect cells (Figure 7).

Figure 7. Viability of fibroblasts after 24 hours of contact with Gr as suspension and with PCLCOL-Gr0, PCL-COL-Gr0.5, PCLCOL-Gr1, PCLCOL-Gr2 in comparison with the positive control GM (growth medium, as standard growth conditions) (mean values ± s.d.; n=6)

In conclusion, the study allowed to successfully develop PCLCOL nanofibers doped with graphene via electrospinning. Preliminary evaluations on scaffolds electrical conductivity are on-going. Further studies assess in-vitro cell proliferation and adhesion with and without skin electrical stimulation.

wishes to thank European Commission for her PhD grant in the frame of the project «Smart and tifunctional 3D printable pro-regenerative biological matrix modulating mechanotransduction as anced therapy to treat skin chronic wounds» nt Agreement No. 101092243 Horizon-CLI-2022-resilience-01-13

